
International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

54

Applying Field Programmable Gate Arrays to

Implement Multiplication operation

SHASHIKUMAR RAM

Student, Electronics and Telecommunication Engineering

Smt. Indira Gandhi College of Engineering, Navi Mumbai, Maharashtra, India

SURAJ PATIL

Student, Electronics and Telecommunication Engineering

Smt. Indira Gandhi College of Engineering, Navi Mumbai, Maharashtra, India

ROHAN NIKAM

Student, Electronics and Telecommunication Engineering

Smt. Indira Gandhi College of Engineering, Navi Mumbai, Maharashtra, India

JAYESH WAGHMARE

Student, Electronics and Telecommunication Engineering

Smt. Indira Gandhi College of Engineering, Navi Mumbai, Maharashtra, India

UMAKANT GOHATRE

Assistant Professor, Electronics and Telecommunication Engineering

Smt. Indira Gandhi College of Engineering, Navi Mumbai, Maharashtra, India

**

ABSTRACT:

Multiplication is at the core of many real-time signal processing algorithms used today. Its

primary use case was functional unit processing for signals and images. Here in this study, we

model the efficient design of several multiplication algorithms. In addition, the article presents

a novel method of multiplication based on the barrel shifter, which offers a variation on the

algorithm for adding and shifting that was previously discussed. Studies focusing on four

algorithms: the array multiplier, the shift-and-add multiplier, the Wallace tree multiplier, and the

Vedic vertical crosswise multiplication technique. In further research, we will compare several

multipliers according to criteria such as logical resource utilisation, latency, power consumption,

and area. The experimental setup employs a sparten-3 XC3S400 FPGA for hardware description

and implementation, as well as parametric analysis. Many built-in, compatible facilities for

parameter analysis, such as XPE for power analysis, are included in the Xilinx ISE-simulation

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

55

tool. At long last this paper presents the results of simulations for the aforementioned

multiplicands with 8, 16, and 32 bits.

Keywords – FPGA, Multiplication, Digital VLSI Design, SoC, ASIC

I. INTRODUCTION

These days, high speed integrated circuits are necessary for a lot of application-specific processor

implementations including real-time signal processing, picture processing, encryption, and data

manipulation. The math multiplier is a common tool in signal processing algorithms. On SOC,

you may find and use a variety of multiplication algorithms. The most well-known methods for

multiplying numbers are the Booth, Wallace tree, Karatsuba, and Braun algorithms. In our

research, we are analysing these many characteristics and are going to present a modified

multiplication algorithm based on a barrel shifter. However, many of these algorithms have their

own restrictions in terms of speed, on-chip size, usage of logic gates, energy, and cost per cell.

Within the span of a single clock cycle, a barrel shifter may move N positions to the left or right

by an arbitrary quantity (according to need) [1]. If this practical behaviour of the barrel shifter

can be studied, it might be utilised to create a multiplier that takes the multiplicand number and

multiplies it by the multiplier number, which is a perfect square. An extensible multiplier block

with configurable parameters (such as input parameter length, computing time, and occupied

space), accessible via a standard interface, is the object of this design and implementation effort.

Once used only for glue logic, field-programmable gate arrays (FPGAs) have now expanded into

the creation of reconfigurable systems and architectures. The increased flexibility and strong

computational architectural features offered by field-programmable gate arrays (FPGAs)—

including embedded multipliers, programmable logic components, DSP blocks, and Block

RAMs—have led to their widespread use as a platform for a wide range of applications. Matrix

operations for floating point matrices are the subject of active research towards FPGA

implementation.

II. LITERATURE SURVEY

Due to their widespread usage in scientific computing, the design and implementation of double

precision floating-point matrix multipliers using field-programmable gate arrays (FPGAs) is a

relatively new field of study. The literature is scattered with research on the realisation of matrix

multipliers on FPGAs. This study makes an effort to compile and provide a literature review

covering the last decade that discusses several facets of designing and realising matrix multipliers

using field-programmable gate arrays (FPGAs). What follows is the outline for the rest of the

article. Part II delves into the salient aspects of FPGA. Several methods and approaches for

designing and implementing fixed- and floating-point matrix multipliers on FPGAs are covered

in Section III. In section IV, we have a concise outline of the areas of application where the

matrix multiplier is crucial. In Section V, we have summarised the results. 174 Presented at the

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

56

MTE. In contrast to other design methods, such as application-specific integrated circuits

(ASICs) or entire bespoke ICs, field-programmable gate arrays (FPGAs) have a far shorter

design turnaround time and may execute abstract logic operations. Because of their adaptability,

FPGAs have been gaining market share in the integrated circuits industry. Although FPGAs have

a shorter time to market and more flexibility than ASICs, these benefits come at the expense of

slower processing speeds and higher power consumption. Logic blocks (LB) in a conventional

field-programmable gate array (FPGA)—shown in Fig. 20.26—are able to execute any digital

logic function with the help of certain sequential components and arithmetic units [760]. The

connections between the LBs are provided by the switch boxes (SBs). The SBs are equipped

with pass transistors that link the incoming and outgoing routing tracks. In order to tailor the LBs

to a particular task, memory circuits manage the pass transistors. The power consumption of

FPGAs may be rather high due to the SBs, which are the main components of the connection

delay between the LBs.

Figure 2.1. Typical FPGA architecture, (A) 2-D FPGA, (B) 2-D switch box, and (C) 3-D

switch box. A routing track can connect three outgoing tracks in a 2-D SB

Extending FPGAs to the third dimension can improve performance while decreasing power

consumption as compared to conventional planar FPGAs. A generalization of FPGAs to the third

dimension would include multiple planar FPGAs, wafer or die bonded to form a 3-D system.

The crucial difference between a 2-D and 3-D FPGA is that the SB provides communication to

five LBs in a 3-D system rather than three neighbouring LBs as in a 2-D FPGA (see Figs. 20.26B

and 20.26C). Consequently, each incoming interconnect segment connects to five outgoing

segments rather than three outgoing segments. The situation is somewhat different for the bottom

and topmost tier of a 3-D FPGA, but in the following discussion, for simplicity this difference is

neglected. Since the connectivity of a 3-D SB is greater, additional pass transistors are required

in each SB, increasing the power consumption, memory requirements to configure the SB, and,

possibly, the interconnect delay. The decreased interconnect length and greater connectivity can

compensate, however, for the added complexity and power of the 3-D SBs.

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

57

To estimate the size of the array beyond which the third dimension is beneficial, the shorter

average interconnect length offered by the third dimension and the increased complexity of the

SBs should be simultaneously considered [761]. Incorporating the hardware resources (e.g., the

number of transistors) required for each SB and the average interconnect length for a 2-D and 3-

D FPGA, the minimum number of LBs for a 3-D FPGA to outperform a 2-D FPGA is determined

from the solution of the following equation, (20.27) Fs,2−D23N1/2=Fs,3−DN1/3,

where Fs,2-D and Fs,3-D are, respectively, the channel width of a 2-D and 3-D FPGA, respectively,

and N is the number of LBs. Solving (20.27) yields N=244, a number that is well exceeded in

modern FPGAs. Since the pass transistors, employed both in 2-D and 3-D SBs, contribute

significantly to the interconnect delay, degrading the performance of an FPGA, those

interconnects that span more than one LB can be utilized. These interconnect segments are

named after the number of LBs that is traversed by these segments

III. MODEL PROJECT BLOCK DIAGRAM AND FLOWCHART

Many modern processors take their multiplication algorithms from the Vedic multiplier, which

appears in the sixteen sutras of the Indian Vedas. Its column-wise addition and bit-wise

multiplication make up the Vedic multiplier, which finds the product term simultaneously. As a

benchmark for efficient multiplication algorithms, it ranks among the top. This paper explains

the vertical crosswise multiplication technique and how to utilise its basic block effectively.

Following the block layout below, this paper explains how to build a basic Vedic block that can

process two-bit data. With four of these blocks, you can process four-bit data.

Figure 3.1. Performing operation on 4-bit data

Array multiplier is a method for doing bit-by-bit multiplication. After being created and saved

in memory, partial products are then passed on to the array of summation.

Prior to its implementation, dedicated memory space is required since it operates on data in array

form. The use of a carry propagation adder for array multiplication has been detailed by Broun.

The pattern looks to be a large pour of HA and FA, and it is consistent across all bit combinations,

as seen below:

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

58

Figure 3.2. Flow chart

The first configuration involves storing the multiplicand in the B register and the multiplier in

the Q register.

1. In the beginning, the multiplicand is kept in the B register and the multiplier in the Q register.

2. The XOR functionality is used to compare the signs of registers B (Bs) and Q (Qs). If the signs

are same, the output of the XOR operation is 0, otherwise it is 1. The result is saved in As (the

sign of the A register).

Please take note that the initial value for register A and the E flip-flop is 0. The number of bits

in the multiplier is represented by the beginning value of the sequence counter, which is n.

Third, we examine the least significant bit of the multiplier. The result is allocated to the A

register using the carry bit in flip-flop E if it is 1, and the contents of register B are added with

the multiplicand. A one-position rightward shift is applied to the contents of E, A, and Q,

meaning that the content of E is moved to the most significant bit (MSB) of A and the least

significant bit of A is moved to the most significant bit of Q.

4. In the event that Qn equals zero, the shift right operation is applied only to the content of E A

Q.

5. A value of 1 is subtracted from the Sequence counter.

6. Verify the value of the Sequence counter (SC). If it is 0, then proceed to complete the

operation. If not, then repeat the procedure with the final result in registers A and Q.

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

59

IV. PROJECT METHODOLOGY AND WORKING EXPLANATION

Using Vivado Design Suite, the MPA multiplication VHDL code is built for the Artix-7 FPGA

[15]. The designed multiplier does the multiplication operation on arrays of MPA numbers using

many multiplying units that act in simultaneously. There is a single DSP48E1 module in this

series of FPGAs that makes up each multiplication unit [16]. As the number of units that need to

be multiplied increases, the created multiplier can easily handle it. This implies that the

multiplier's number of multiplying units may be adjusted to meet different processing demands.

Due to space constraints, we only provide a single multiplier that can multiple two arrays of

integer MPA numbers in this contribution. By applying the same logic to floating-point

multiplication, we may get the result in a mantissa array of fixed precision (i.e., fixed-length) by

factoring in exponents and rounding.You may code it to compute various arithmetic functions

using the DSP48E1 module that is included in Artix-7 FPGA.

Nevertheless, the A · B + C + CARRY IN operation is the only one used in this project.

Here is the most extensive list of operand widths: Type A: 25 bits, Type B: 18 bits, and Type C:

48 bits • Input - one bit. The symmetric operands are chosen because the asymmetric operand

multiplier, which has 25 bits by 18 bits, is challenging to build and store data with (i.e., it stores

partial results in an accumulator). Hence, 18 × 18 bits should be the maximum width of operands

in the multiplying unit. One drawback of using a non-electronic number (one that isn't a power

of 2) is that it reduces the utilisation of the FPGA chip's BRAM memory block.

As a result, the operand C has a size of 32 bits and its width is set to 16 x 16. Such a DSP module

setup puts the delay at 4 clock cycles for excellent performance. A single extra clock cycle is

needed to process the data coming into and going out of the DSP module.

In addition, a register is necessary for the data input multiplexer to keep operating at a high

speed. at a result, the minimal delay is defined at 6 clock cycles, the figure that was ultimately

settled upon throughout design. Thus, the latent.

The power of FPGA is derived from its adaptability. Although designing anything is possible, it

might be a time-consuming process. My goal in this research is to demonstrate the versatility

and scalability of field-programmable gate arrays (FPGAs). It takes time to multiply, and it may

occasionally determine the system's overall performance. The power of digital signal processor

(DSP) chips is compared with their multiplication and addition (MAC) numbers in a second

because the impulse response or Fourier transform of the discrete signal is computed by

multiplying and adding a large number of samples. Applications requiring massive MAC

operations, such as adaptive noise cancellations, machine vision, HDTV, military radar, and

many more, find FPGAs, which provide bespoke solutions, useful. On FPGA, there are a lot of

methods to do the multiplication. When speed is paramount, it may be done in a parallel or

pipelined fashion; otherwise, it can be designed with a minimal footprint to keep costs down.

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

60

I will use a 32*32 multiplier for the test since the DE0-Nano device has 149 programmable pins.

More bits for multiplication are possible, but they cannot be assigned to the pins. Therefore, I

just employ the multiplier design; this is a demonstration of many techniques.

V. PROJECT RESULT

Discuss the design and implementation of the suggested model of a 2*2 binary multiplier in this

area. A Xilinx programming mimic that is driven by outline information. With version 14.7,

Xilinx has released its programming system.

Figure 5.1. Half adder

RTL in the circuit design cycle. RTL is used in the logic design phase of the integrated circuit

design cycle. An RTL description is usually converted to a gate-level description of the circuit by

a logic synthesis tool. The synthesis results are then used by placement and routing tools to create

a physical layout. The Fig 1,Fig 2 and Fig 3 represents the RTL schematic of 2*2 binary

multiplier. In which it gives the information regarding logic of the design in the form of symbols

like adders , multipliers.

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

61

Figure 5.2. simulation timing diagram of 2*2 binary multiplier

When to Run the Simulation, You can find out how long the simulation took by looking at the

diagram that shows the duration of the clock signal. The 2*2 multiplier's simulation outcome with

respect to a and b is shown in figure 4.A and b are inputs, and c is the result. Then, after receiving

the input, hold off for 100 nanoseconds.

Figure 5.2. Test-bench RTL Schematic Diagram

This multiplier makes use of the shift-and-add approach, which is coded in VHDL using Xilinx

14.5 and then implemented on the XC3S500E device. The operands must be 8 bits wide for the

multiplier to work. A 2-bit parallel prefix adder is used to perform the addition function. An

assortment of parallel prefix adder variations, including BK, Skalansky, KS, HC, LF, Knowles

models, and the suggested hybrid model, are used to evaluate the Multiplier block's performance.

Based on several variations of the parallel prefix adder, the results of the Multiplier block are

summarised. Three metrics are used for comparison: speed, area, and power usage. The delay

parameter is used to measure the speed performance.

VI. CONCLUSSION

Ultimately, this research work has explored how to perform the multiplication operation using

Field Programmable Gate Arrays (FPGAs). It becomes clear that FPGAs provide a potential

platform for effectively performing multiplication operations in many computer applications after

examining their designs, programming approaches, and optimisation strategies in depth. The

research emphasises the benefits of using field-programmable gate arrays (FPGAs), including its

capacity for parallel processing, ease of reconfiguration, and little power consumption. Experts in

the field may use these features to create and execute efficient multiplication processes that use

http://www.ijmrta.in/

International Journal of Multidisciplinary Research and Technological Advancement

(IJMRTA)

Volume 1 Issue 1, Year Nov-Dec 2023 Available at www.ijmrta.in

**

62

little power. Flexible gate arrays (FPGAs) are a flexible solution for a wide variety of computing

tasks, from signal processing to cryptographic algorithms, thanks to their versatility.

In addition, the study highlights the significance of optimisation techniques to boost the

effectiveness of FPGA multiplication processes. Achieving ideal performance is greatly aided by

techniques like pipelining, parallelization, and algorithmic optimisations. It is expected that future

advancements in FPGA design and programming tools will lead to even more efficient and

scalable multiplication implementations as technology progresses. Finally, digital design and

computing professionals and academics have a promising new direction to pursue using FPGAs

while performing multiplication operations.

References:

[1]. Z.Huang, “High-Level optimization Techniques for Low power Multiplier Design”, PhD

dissertation, University of California, LOS Angeles, June 2003

[2]. L.Raja, B.M.Prabhu, K.Thanushkodi, “Design of low power Dual Threshold Voltage Adder

Module”, Elsevier, International Conference on Communication Technology and System Design,

2011.

[3]. MohmmadJaveed, GellaRavikanth, “Design and Implementation of 64 BIT Multiplier by using

carry save Adder”, Proc. 10th IRF International Conference, pp. 45-47, Oct.2014.

[4]. Sukdev Singh, Puneeth Jain, Pankaj Sharma, RamandeepChalal, “Design and synthesis of various

Multipliers using VHDL: Performance Analysis Approach”, International Journal of Electronics

and Computer Science Engineering, Vol.3, N0.3, pp.339-347.

[5]. Sarita Singh and Sachin Mittal, “VHDL design and Implementation for optimum Delay & Area

for Multiplier and Accumulator unit by 32 bit- sequential Multiplier”, International Journal of

Engineering Trends and Technology(IJETT), Vol.3, No.5, pp.683-686, 2012.

[6]. Ruchi Sharma, “Analysis of Different multiplier with Digital Filters using VHDL Language”,

International Journal of Engineering and Advanced Technology(IJEAT),Vol.2, No.1, pp.45-48,

Oct.2012.

[7]. K.S.Ganesh Kumar, J.DevaPrasannam&M.Anitha Christy, “Analysis of Low power Area and

High Speed Multipliers for DSP applications”, International Journal of Emerging Technology &

Advanced Engineering (IJETAE), Vol.4, No.3, pp.278- 282, March 2014.

[8]. Giovanni D Aliesio, “8-by-8 Bit Shift/Add Multiplier”, Digital Design and & synthesis COEN

6501, Department of Electrical & Computer Science Engineering, Concordia University, Dec

2003

http://www.ijmrta.in/

